110 research outputs found

    A Nitric Oxide-Donor Furoxan Moiety Improves the Efficacy of Edaravone against Early Renal Dysfunction and Injury Evoked by Ischemia/Reperfusion

    Get PDF
    Edaravone (5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, EDV) is a free-radical scavenger reduces organ ischemic injury. Here we investigated whether the protective effects of EDV in renal ischemia/reperfusion (I/R) injury may be enhanced by an EDV derivative bearing a nitric oxide- (NO-) donor furoxan moiety (NO-EDV). Male Wistar rats were subjected to renal ischemia (45 minutes), followed by reperfusion (6 hours). Administration of either EDV (1.2–6–30 µmol/kg, i.v.) or NO-EDV (0.3–1.2–6 µmol/kg, i.v.) dose-dependently attenuated markers of renal dysfunction (serum urea and creatinine, creatinine clearance, urine flow, urinary N-acetyl-β-D-glucosaminidase, and neutrophil gelatinase-associated lipocalin/lipocalin-2). NO-EDV exerted protective effects in the dose-range 1.2–6 µmol/kg, while a higher dose (30 µmol/kg) was needed to obtain protection by EDV. Both EDV and NO-EDV modulated tissue markers of oxidative stress and lipid peroxidation. NO-EDV, but not EDV, activated endothelial NO synthase (NOS) and blunted I/R-induced upregulation of inducible NOS, secondary to modulation of Akt and NF-κB activation, respectively. Besides NO-EDV administration inhibited I/R-induced IL-1β, IL-18, IL-6, and TNF-α overproduction. Overall, these findings demonstrate that the NO-donor moiety contributes to the protection against early renal I/R injury and suggest that NO-donor EDV codrugs are worthy of additional study as innovative pharmacological tools.Fil: Chiazza, Fausto. Universitã â  Di Torino; ItaliaFil: Chegaev, Konstantin. Università  Di Torino; ItaliaFil: Rogazzo, Mara. Universitã â  Di Torino; ItaliaFil: Cutrin, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas (i); ArgentinaFil: Beneti, Elisa. Universita di Torino; ItaliaFil: Lazzarato, Loretta. Universita di Torino; ItaliaFil: Fruttero, Roberta. Universita di Torino; ItaliaFil: Collino, Massimo. Universita di Torino; Itali

    Acute treatment with relaxin protects the kidney against ischaemia/reperfusion injury.

    Get PDF
    Although recent preclinical and clinical studies have demonstrated that recombinant human relaxin (rhRLX) may have important therapeutic potential in acute heart failure and chronic kidney diseases, the effects of acute rhRLX administration against renal ischaemia/reperfusion (I/R) injury have never been investigated. Using a rat model of 1-hr bilateral renal artery occlusion followed by 6-hr reperfusion, we investigated the effects of rhRLX (5 μg/Kg i.v.) given both at the beginning and after 3 hrs of reperfusion. Acute rhRLX administration attenuated the functional renal injury (increase in serum urea and creatinine), glomerular dysfunction (decrease in creatinine clearance) and tubular dysfunction (increase in urinary excretion of N-acetyl-β-glucosaminidase) evoked by renal I/R. These beneficial effects were accompanied by a significant reduction in local lipid peroxidation, free radical-induced DNA damage and increase in the expression/activity of the endogenous antioxidant enzymes MnSOD and CuZnSOD superoxide dismutases (SOD). Furthermore, rhRLX administration attenuated the increase in leucocyte activation, as suggested by inhibition of myeloperoxidase activity, intercellular-adhesion-molecule-1 expression, interleukin (IL)-1β, IL-18 and tumour necrosis factor-α production as well as increase in IL-10 production. Interestingly, the reduced oxidative stress status and neutrophil activation here reported were associated with rhRLX-induced activation of endothelial nitric oxide synthase and up-regulation of inducible nitric oxide synthase, possibly secondary to activation of Akt and the extracellular signal-regulated protein kinase (ERK) 1/2, respectively. Thus, we report herein that rhRLX protects the kidney against I/R injury by a mechanism that involves changes in nitric oxide signalling pathway
    • …
    corecore